Чем могут заниматься биологи-генетики в агробиотехнопарках?
Еще по теме субсидии УК агробиотехнопарка 2023-2030
- Понятие агропромышленных технопарков (агробиотехнопарков)
- Правила субсидирования агробиотехнопарков
- Правила субсидирования агробиотехнопарков
- Агробиотехнопарк и селекционно-семеноводческий центр
- Гранты на НИОКР
- История селекции и семеноводства в России
- Как агробиотехнопарки решат проблему дефицита семян?
- Кто импортер семян подсолнечника в Россию?
- На что тратит субсидию агробиотехнопарк?
- Наши услуги агробиотехнопарки
- Санитарно-защитная зона (СЗЗ) агробиотехнопарки
- Субсидия агробиотехнопарк: ПИР разработка ПСД
- Субсидия агробиотехнопарк: ФОТ
- Субсидия агробиотехнопарк: оснащение
Конкурс на субсидии для агробиотехнопарков июль 2025 (с 10 июля 2025)
Программа грантов на создание и развитие агробиотехнопарков запущена Постановлением Правительства РФ №1007 (от 2023 г.).
Основная цель — внедрение современных биотехнологий в агропромышленный комплекс, включая селекцию, производство кормовых добавок, защиту растений и переработку сельхозпродукции.
Подробные консультации (платные) по всем этим вопросам можно получить по электронным каналам связи (Skype, Zoom, телефон и т.п.) или в офисе компании в Казани (по предварительной записи) - оставьте заявку и напишите нам свой вопрос
При необходимости - обращайтесь к нам!
Оплатить консультацию по вопросу можно здесь
Заказать консультацию или сделать заявку на обучение можно:
- или через форму обратной связи
- или через форму контактов внизу страницы
- или опишите кратко суть Вашего проекта (это уменьшит количество уточняющих вопросов)
Чем еще мы можем быть полезны?
- Аккредитация индустриал. парка ППРФ 794
- Аккредитация пром. технопарка ППРФ 1863
- Аккредитация пром. технопарка ППРФ 1007
- Концепция развития парка
- Концепция развития ОРЦ, ЛАЦ, РЦ, ОРТПЦ
- Консультации по бизнес-модели
- Бизнес план УК, девелопера парка, резидентов парка
- Услуги УК, тарификация
- Юридические документы, регламенты
- Заявка УК или резидента парка по ПКМ РТ 507 на льготы, субсидии, преференции, льготные займы
- Заявка УК или резидента парка по ПКМ РТ 505 на компенсацию части тарифа по потребленной и оплаченной электроэнергии
- для резидентов и управляющих компаний (УК) промышленных площадок, индустриальных парков, технопарков, территорий опережающего развития (ТОР, ТОСЭР, ОЭЗ, СЭЗ), других объектов инфраструктуры:
- разработка юридической документации, концепции, бизнес-плана развития проекта, технико-экономического обоснования (ТЭО), меморандума, презентации, паспорта проекта, пакета документации,
- консультируем по финансово-экономическим, юридическим вопросам, маркетингу (исследование рынка, продвижение),
- содействуем в получении целевого финансирования, налоговых льгот, грантов и субсидий, иных видов поддержки, сопровождение проекта заявителя в конкурсах региональных и федеральных органов власти России,
- разная консультационная и информационная поддержка участников государственных конкурсов на соискание государственной поддержки в виде налоговых льгот, грантов и субсидий, иных видов поддержки, сопровождение проекта заявителя в конкурсах Республики Татарстан и России,
- услуги консультационного сопровождения и разработки документации
- привлечение партнеров в проект, бизнес.
- доработка документов и форм заявки,
- разработка сметы проекта, финансовой модели, бизнес-плана, технико-экономического обоснования (ТЭО), меморандума, презентации, паспорта проекта, подготовка пакета документации по проекту,
- консультации по налогообложению гранта, бюджетным, казначейским процедурам, методике раздельного учета, отчетности, иным финансово-экономическим, маркетинговым вопросам
- сопровождение проекта заявителя в конкурсах региональных и федеральных органов власти - до получения целевого финансирования, налоговых льгот, грантов и субсидий, иных видов поддержки,
- проведение исследований рынка (маркетинговых), оценка конкурентов, рекомендации по продвижению, развитию,
- многое другое - обращайтесь к нам за услугами и консультациями.
Разовые консультационные услуги:
Экспертиза финансово экономической модели (ФЭМ) и рекомендации по улучшению ФЭМ (в формате устного обсуждения, с краткими комментариями в эл.письме по формату Исполнителя:
- основного сценария
- каждого доп. сценария
Анализ (подбор) релевантных программ гос.поддержки проекта (с т.зр. развития
- как проекта по переработке токсичных видов отходов Х категории - помет навоз и т.п.
- или как самостоятельное производство биоудобрений
- как в качестве резидента экотехнопарка - экоТП,
- так и вне экоТП -
- с целью софинансирования части затрат на:
- приобретение оборудования,
- на СМР здания производственного назначения,
- на подведение сетей и коммуникаций,
- приобретение подвижного состава - транспорта: самосвалы, цистерны, ассенизаторы
Подробные консультации (платные) по всем этим вопросам можно получить по электронным каналам связи (Skype, Zoom, телефон и т.п.) или в офисе компании в Казани (по предварительной записи) - оставьте заявку и напишите нам свой вопрос
При необходимости - обращайтесь к нам!
Оплатить консультацию по вопросу можно здесь
Заказать консультацию или сделать заявку на обучение можно:
- или через форму обратной связи
- или через форму контактов внизу страницы
- или опишите кратко суть Вашего проекта (это уменьшит количество уточняющих вопросов)
Обращайтесь к нам! (форма внизу страницы)
Чем еще мы можем быть полезны?
- Консультации по гранту, земле, налогам, ИП-КФХ
- Бизнес план КФХ, СХТП
- Договоры, юридические документы,
- Заявка на Агростартап
- Заявка на грант кооперативу (СПоК)
- Заявка на грант Агропрогресс для ООО и СПК
- Заявка на грант Агротуризм для СХТП
- Заявка УК, резидента агропромышленного парка ПКМ РТ 507 на льготы, субсидии, преференции, льготные займы
- Заявка УК, резидента агропромышленного парка ПКМ РТ 505 на компенсацию части тарифа по потребленной и оплаченной электроэнергии
- консультации по финансово-экономическим, налоговым, бухгалтерским, управленческим, маркетинговым вопросам;
- разработка документации бизнес-проекта;
Мы будем рады помочь Вам в решении Ваших задач. По любым возникающим вопросам, пожалуйста, обращайтесь.
Также мы можем помочь Вам законно снизить налоги.
Путем применения законных налоговых льгот и преференций (по НК РФ и региональным законам - субъектов РФ):
- проверка (подходят ли Ваши компании под какие-либо)
- подготовка компании для применения налоговых льгот
- иногда - реструктуризация компании
- иногда выделение раздельного учета операций внутри компании
Также мы можем помочь Вам получить льготные деньги:
Путем участия в программах и конкурсных отборах (по федеральным и региональным НПА):
- субсидии
- гранты
- целевые бюджетные средства
- льготные займы фондов
- льготные кредиты банков
- земельные участки без торгов
- льготные ставки аренды земли и имущества
Подробные консультации (платные) по всем этим вопросам можно получить по электронным каналам связи (Skype, Zoom, телефон и т.п.) или в офисе компании в Казани (по предварительной записи) - оставьте заявку и напишите нам свой вопрос
При необходимости - обращайтесь к нам!
Оплатить консультацию по вопросу можно здесь
Заказать консультацию или сделать заявку на обучение можно:
- или через форму обратной связи
- или через форму контактов внизу страницы
- или опишите кратко суть Вашего проекта (это уменьшит количество уточняющих вопросов)
Обращайтесь к нам! (форма внизу страницы)
Подробные консультации (платные) по всем этим вопросам можно получить по электронным каналам связи (Skype, Zoom, телефон и т.п.) или в офисе компании в Казани (по предварительной записи) - оставьте заявку и напишите нам свой вопрос
При необходимости - обращайтесь к нам!
Оплатить консультацию по вопросу можно здесь
Заказать консультацию или сделать заявку на обучение можно:
- или через форму обратной связи
- или через форму контактов внизу страницы
- или опишите кратко суть Вашего проекта (это уменьшит количество уточняющих вопросов)
Обращайтесь к нам! (форма внизу страницы)
Йод и селен в рационе сельскохозяйственных животных и птиц
Биологическая роль селена и йода в организме птицы
Источник публикации:
https://propionix.ru/fotogalereya/image/jod-i-selen-dlya-ptic
Селен (Se) – химический элемент главной подгруппы VI группы периодической системы. Относится к типу рассеянных элементов, встречается в виде примесей в рудах сульфидных, ураново-ванадиевых, молибденовых, фосфоритных и серных месторождений. Известно более 40 микроминералов селена, среди которых наиболее распространены селениды металлов, имеющих большой порядковый номер (свинец, ртуть, серебро, медь, никель). По кристаллохимическим и геохимическим свойствам элемент тесно связан с серой.
Биологическое значение селена открыли в 1957 г. Шварц и Фольтц (Schwarz, Folltz, 1958). Селен оказался главным компонентом фактора 3, присутствующего в пивных дрожжах и оказывающего лечебный эффект при некрозе печени крыс.
Известно, что при недостатке селена возникает более 20 заболеваний, характеризующихся нарушением микроциркуляции и увеличением проницаемости капиллярных и клеточных мембран. Это ведет к отечности, кровоизлияниям и изменению структуры клеток организма (Атлавин и др., 1977; Кудрин, 2001).
Болезни селеновой недостаточности человека и животных широко распространены во многих странах мира и причиняют большой экономический ущерб. К ним относят беломышечную болезнь молодняка сельскохозяйственных животных, экссудативный диатез, токсическую дистрофию печени, некроз печени и почек крупного рогатого скота, сердечную миопатию свиней, телят и ягнят, миокардит, атрофию поджелудочной железы, артриты, некоторые энтериты, маститы, анемии, гемолиз эритроцитов, потерю остроты зрения, депрессии роста, бесплодие, дегенерацию яичников, депигментацию кожи и другие патологии.
Биохимические функции селена в организме связаны с его каталитической ролью и заключаются в регуляции скорости окислительно-восстановительных процессов, а также реакций, идущих с участием ферментов, витаминов и гормонов. Селен в малых дозах стимулирует активность многих ферментных систем млекопитающих, усиливая при этом процессы биологического окисления и фосфорилирования. Антиоксидантное действие селена обусловлено его включением в активный центр селензависимой глутатионпероксидазы и возможной способностью селенсодержащих аминокислот оказывать самостоятельное антиоксидантное действие, так как они являются тушителями радикалов или участвуют в нерадикальном разложении липидных перекисей (Биленко, 1989).
Селен регулирует усвоение и расход в организме витаминов А, С, Е и К. По своему действию элемент близок к витамину Е, один его атом способен заменить 700-1000 молекул витамина (Кудрявцева, 1974). С другой стороны, витамин Е уменьшает потребность организма в селене, поддерживая его в активной форме или препятствуя выведению из организма (Кальницкий, 1985; Лебедев, 1990; Кузнецов, 2001).
Селен интенсивно влияет на белковый обмен, особенно на обмен серосодержащих аминокислот. В химическом отношении он близок к сере, но более активен и токсичен. Сера в определенной степени нейтрализует его токсическое действие. При избыточном поступлении в организм он может замещать серу в серосодержащих соединениях (Томмэ, Филиппович, 1975).
Селен необходим для поддержания функции мембран, биосинтеза белка на рибосомах и образования макроэргических соединений в митохондриях (Касумов, 1981). В опытах С.Ф. Алешко (1967) установлено, что селен оказывает большое влияние на процессы углеводного и липидного обмена животного организма. Есть предположение, что микроэлемент участвует в водно-солевом обмене. Видимо, он является одним из агентов, перераспределяющих тканевые жидкости, в том числе и кровь (Цалс, Пеликс, 1973).
При поступлении в организм человека и животных в небольших дозах селен обладает иммуностимулирующим эффектом: ускоряет синтез антител, повышает устойчивость к микробным и вирусным инфекциям, усиливает фагоцитоз, функции нейтрофилов и лимфоцитов (Дунин, Лебенгарц, 1997). Селен проявляет защитное действие в отношении соединений ртути, мышьяка, кадмия. В меньшей степени защищает от свинца, таллия и теллура. Селен и медь могут уменьшать токсическое действие друг друга. В целом селен является универсальным антидотом (Орджоникидзе, Громова, Скальный, 2001). Как отмечают М.Ф. Томмэ и Э.Г. Филипович (1975), селен в значительной степени подавляет рост злокачественных опухолей, кроме того, обладает ярко выраженным радиозащитным свойством. В последние годы его стали использовать как стимулятор роста, развития, плодовитости животных, увеличения яйценоскости, оплодотворяемости, выводимости цыплят и улучшения других продуктивных качеств (Родионова, 1992; Мишанин, 2001; Тутельян и др., 2002).
При изучении биологического действия селена необходимо учитывать адаптивные свойства организмов, так как пороговая чувствительность животных к селену меняется в зависимости от содержания элемента в естественной среде обитания (Ермаков, Ковальский, 1968).
При использовании селеноорганических препаратов в рационах птицы улучшается состояние оперения, снижаются затраты корма на единицу продукции, благодаря повышению качества скорлупы и антиоксидантным свойствам селена увеличивается срок хранения товарных яйц. Высокое содержание селена в инкубационных яйцах значительно улучшает селеновый статус цыплят после вывода. Кроме того, повышенное содержание селена в яйцах и в мясе, снижение потерь влаги улучшают товарное и питательное качество продукции и дают человеку возможность потреблять большее количество селена из биологически полноценного источника (Фисинин, Папазян, 2003).
Селен обладает прооксидантной активностью, которая проявляется в условиях высоких (токсических) концентраций (Тутельян и др., 2002). При этом происходит угнетение тканевого дыхания, понижается активность окислительно-восстановительных ферментов. Это вызывает глубокие нарушения обменных процессов и приводит к появлению специфических реакций, а иногда к смерти (Касумов, 1981). Явления токсикоза наблюдаются при уровне потребления селена, приблизительно в 10 раз превышающем его выделение. Для животных летальным является содержание селена в корме 10 мг/кг сухого вещества или (10-11) мг/кг живой массы (Дунин, Лебенгарц, 1997). Некоторые химические элементы и факторы питания снижают токсическое действие селена, в частности, высокий уровень белка в корме, введение метионина и триптофана, арсенид натрия (усиливает выведение селена с желчью), льняное масло, соединения меди, железа, кадмия, витамин Е в сочетании с метионином. Для предотвращения токсичности селена обычно применяют соединения мышьяка (Hill, 1975).
Таким образом, обладая чрезвычайно высокой токсичностью, в малых дозах селен является эссенциальным, жизненно необходимым микроэлементом, и исследования последних десятилетий окончательно доказали незаменимость его для млекопитающих и птицы, поскольку при дефиците селена нормальное течение обменных процессов в организме животных и получение от них максимальной продуктивности невозможны.
Йод (I) – химический элемент главной подгруппы VII группы периодической системы, относится к галогенам. В зависимости от рH среды может проявлять окислительные или восстановительные свойства. В щелочных условиях йод окисляется до хорошо растворимых йодидов и йодатов и накапливается в растворе, а в кислой среде, напротив, восстанавливается до молекулярного состояния и улетучивается. Это обстоятельство имеет огромное значение в процессах превращения йода в природе, усиливая или замедляя темпы его круговорота.
Наилучшим критерием обеспеченности животного организма йодом является содержание его в растительных кормах. Это объясняется тем, что свыше 90 % необходимого для животных йода поступает с растительной пищей. Растения могут поглощать йод не только из почвы, но и из воздуха, в их тканях йод находится в форме щелочных йодидов, которые быстро усваиваются в организме животных и человека. Растения черноземной зоны европейской части и приморских районов, содержащие йод в концентрациях (0,3-1,0) мг/кг, обеспечены достаточным количеством этого элемента. Растения, растущие на торфянистых и песчаных дерново-подзолистых почвах нечерноземной зоны Белоруссии, Прибалтики и других районов европейской части, а также растения ряда регионов Средней Азии, Сибири и Дальнего Востока, в большинстве своем содержат недостаточно йода – (0,04-0,3) мг/кг (Кашин, 1987).
По данным М.А. Байтурина и др. (1972), между содержанием йода в воде, почве, растениях, кормах и продуктах животного происхождения и уровнем обмена веществ в животных организмах существует прямая корреляционная зависимость.
Йодная недостаточность может обусловливаться причинами первичного и вторичного характера. К первичным относят недостаточное поступление йода с кормом и водой, к вторичным – действие гоитрина и цианата (Кашин, 1987). Гоитрин тормозит образование гормонов щитовидной железы. Им богаты все крестоцветные, соевые бобы, горох, арахис, белый клевер. Цианат превращается в теле животных в тиоцианат, который тормозит избирательное накопление йода щитовидной железой. Относительно много циановых соединений содержат различные крестоцветные, льняной шрот, отдельные виды клевера (Хенниг, 1976).
На усвояемость йода в организме животных большое влияние оказывает медь, которая переводит йод в неусвояемую форму, поэтому их соли несовместимы. Антагонисты йода в организме – кобальт, марганец, свинец, кальций, избыток которых в рационе может привести к йодной недостаточности (Микулец, 2002).
Йод через йодсодержащие гормоны щитовидной железы влияет на все обменные процессы в организме животных (Ковальский, 1972; Георгиевский, 1978; Кальницкий, 1985). Эти гормоны регулируют такие проявления жизнедеятельности, как теплообразование, рост и развитие организма, метаболические процессы – общий, белковый, углеводный и жировой обмены, транспорт метаболических субстратов и ионов через клеточные мембраны, превращение каротина в витамин А, обмен витаминов, кальция, водный и электролитный обмены, функционирование всех систем организма (Кашин, 1987). Важным этапом расшифровки механизма действия тиреоидных гормонов явилось открытие их регулирующего действия на ранних этапах биосинтеза ферментов и других белков (Верещагина, Трапкова, 1984).
Физиологически нормальное содержание йода играет важную роль в защитных реакциях организма человека и животных на действие болезнетворных агентов. В регионах значительного постоянного дефицита йода у животных и людей формируется эндемический зоб, на почве которого наблюдаются генетические нарушения. В зонах меньшего дефицита йода у животных наблюдается снижение активности большинства обменных процессов (Сазонов, Хлыбова, 1963; Гудкин, Носатова, 1963; Фирсова, 1968; Жданова, Казанцева, 1971).
У сельскохозяйственных животных образование зоба сопровождается снижением основного обмена, усиленным отложением жира и подавлением синтеза белка, снижением продуктивности и нарушением воспроизводительной функции. Отмечается замедление роста, значительное отставание в развитии половых желез, кожи и волос (Хенниг, 1976). Недостаток йода в рационе птиц также приводит к гипофункции щитовидной железы. В особенности это относится к молодняку, так как взрослая птица может довольно долго противостоять умеренному дефициту йода в рационе без заметного снижения продуктивности и выводимости яиц. Однако при очень низком содержании йода в корме [(10-20) мкг в 1 кг] яйцекладка может не снижаться, но уменьшается масса эмбрионов, понижаются выводимость и жизнеспособность цыплят.
Таким образом, йод, являясь обязательным компонентом гормонов щитовидной железы, через изменение их активности посредством своего дефицита или избытка оказывает влияние практически на все обменные процессы, что неизбежно сказывается на жизнедеятельности организма в целом, в том числе и на показателях продуктивности сельскохозяйственных животных. Недостаток йода в рационах животных необходимо компенсировать.
По данным J. Koehrle (1999), микроэлементы селен и йод были вымыты из верхних слоев почвы в течение и после ледникового периода во многих областях планеты, что привело к недостаточному их содержанию в рационах людей и животных. Недостаточное поступление селена вызывает его низкий уровень в сыворотке крови, что коррелирует с развитием опухолей щитовидной железы.
В опытах на животных показано, что одновременный дефицит селена и йода приводит к более сильному гипотиреоидизму, чем дефицит одного йода (Larsen, 1997; Fleming, 1980; Larsen, Berry, 1995; Salvatore, Tu, Harney, 1996).
По мнению J. Arthur, F. Nikol, G. Beckett (1992), дефицит селена препятствует синтезу йодтирониндейодиназы, которая превращает тироксин в более активную форму трийодтиронин. У крыс одновременный дефицит йода и селена ведет к увеличению щитовидной железы и количества в плазме крови тиреотропина в большей степени, чем при одном дефиците йода. Эти результаты указывают на то, что дефицит селена может быть причиной дефицита йода.
По данным Н.Д. Овчаренко (2001), сельскохозяйственные животные могут адаптироваться к недостатку йода, так что факт недостаточности йода в почве сам по себе не является главным зобогенным фактором. В возникновении заболевания животных существенное значение имеют пониженное содержание в биосфере таких микроэлементов, как кобальт, медь, цинк, молибден, селен, повышенное – алюминия, марганца, железа, кроме того, инфекционные и инвазионные агенты.
Особую актуальность приобретает комплексное влияние селена и йода на продуктивность животных. По мнению А.Г. Зяббарова, А.Д. Большакова (2002), при дефиците селена в организме животных возникают признаки йодной недостаточности, которая проявляется, прежде всего, в увеличении щитовидной железы у растущего молодняка.
Необходимо отметить, что различные химические соединения селена и йода обладают неодинаковой биодоступностью для животных.
Селен поступает в организм животных с кормом и водой в двух формах: неорганической – в виде селенатов (соли селеновой кислоты H2SeO4), селенитов (соли селенистой кислоты H2SeO3) и селенидов (соли H2Se), и органической – селенсодержащих белков и аминокислот (селенометионина и селеноцистеина). Неорганический селен широко используется в качестве добавки в корм сельскохозяйственных животных и птицы.
Большая часть селена в животных тканях присутствует в виде селенометионина (Se-Met) и селеноцистеина (Sec). Селенометионин включается на место метионина в различные белки. Он синтезируется микроорганизмами и растениями, но не синтезируется высшими животными и человеком и может рассматриваться как нерегулируемый запас селена. Селеноцистеин – форма селена, ответственная за биологическую активность микроэлемента, поскольку присутствует в активном центре ряда селенсодержащих белков – глутатионпероксидаз, йодтирониндейодиназ и селенопротеина. Поскольку Sec включается в транспортную РНК, не исключена возможность существования других биологически активных форм микроэлемента (Robinson, 1976; Gladyshev, Hatfield, 1999; Wittwer, 1989).
Неорганические и органические формы селена, абсорбируясь организмом, претерпевают биохимические превращения. Часть экзогенного селена идет на восполнение потребности организма в физиологически важных формах селена, часть образует селеновое депо организма (в основном в форме Se-Met), а часть превращается в экскретируемые формы. Биоусвояемость элемента составляет (50-80) % и зависит от других компонентов рациона. Улучшается под влиянием белков, витаминов А, Е и С, снижается при дефиците витаминов Е, В2, В6, метионина, избыточном поступлении с пищей тяжелых металлов, например, свинца и ртути. Сера и мышьяк ингибируют всасывание и метаболизм селена в организме животных (Тучемский, 1999). Селен выводится из органов и тканей в среднем по истечении (8-15) дней (Атлавин и др., 1990). Но основная масса элемента [(90-95) %] выделяется на протяжении месяца (Ермаков, Ковальский, 1974).
Согласно современным представлениям, общей регулируемой формой селена в организме является селенид. Так, Se-Met из рациона или продуктов распада белков превращается по реакции транссульфирования в Sec, который переходит в селенид. Неорганический селен (селенит) реагирует с ферментом глутатионпероксидазой (ГП) также с образованием селенида. Последний частично включается в биосинтез селенсодержащих белков и транспортной РНК, частично образует транспортные формы, а частично выделяется из организма преимущественно в виде метилированных форм с мочой или выдыхаемым воздухом (Тутельян и др., 2002).
Содержание и распределение селена в организме животных зависит от обеспеченности рациона данным элементом и составляет (20-25) мкг/кг живой массы (Георгиевский, 1979). Концентрация селена в теле животных, по В.К. Космачеву (1974), составляет (0,44-4,00) ч/млн, по В.И. Георгиевскому и др. (1979) и С.Н. Касумову (1981) – 2∙10-6 % на свежую ткань. Концентрация селена в организме сельскохозяйственной птицы составляет примерно 0,02 мг/кг, или (0,000002-0,0000025) %. С возрастом происходит увеличение концентрации (Мишанин, 1999). Селен поступает в организм животных через пищеварительный тракт, кожу и легкие. Наиболее активное всасывание происходит в двенадцатиперстной кишке и в меньшей – в тощей и подвздошной.
Скорость всасывания селена зависит от формы соединения и происходит в следующем порядке: органические соединения селена > селенаты > селениты > селениды (Визнер, 1976). Всасывание органических и неорганических форм является активным процессом. Селенометионин переносится против градиента концентрации, а абсорбция селенита происходит путем пассивной диффузии с участием глутатионпероксидазы. В процессе всасывания принимают участие белковые переносчики (Кононский, 1980). Селеносодержащие аминокислоты и их соответствующие аналоги (цистин, метионин) имеют общие места и механизмы всасывания.
В опытах на животных доступность селена из органических соединений (селенометионин, дрожжевые продукты, высокоселеновая пшеница) была достоверно выше, чем из селенита натрия (Кузнецов С., Кузнецов А., 2001). Sec и особенно Se-Met быстрее преобразуются (путем деградации аминокислот) в селенид, пригодный для образования глутатионпероксидазы.
По данным В.В. Ковальского, В.В. Ермакова (1968) и С.Н. Касумова (1981), наиболее высокой степенью усвоения обладает Se-Met. Благодаря большей химической стабильности, эта селенсодержащая аминокислота может использоваться в качестве резервного селена при недостатке его в рационе в большей мере по сравнению с селенитом натрия. Поджелудочная железа у цыплят лучше депонирует селен в форме Se-Met, чем в других формах (Cantor, Langevin, Noguchi, Scott, 1975).
Доступность селена из кормов животного происхождения (15-25) %, из растительных – (60-70) %. Низкую биологическую доступность селена из кормов животного происхождения (кроме молока) исследователи связывают с образованием комплексных соединений с пуриновыми основаниями, ртутью и другими веществами.
У цыплят (5-30)-дневного возраста процессы накопления селена в органах происходят интенсивнее, чем у птиц старшего возраста, что свидетельствует о более высокой потребности их в элементе. К 4-месячному возрасту в организме цыплят, получавших дополнительно селенит натрия, накапливается некоторый запас селена, устанавливается более высокий уровень его обмена и он задерживается в меньшем количестве. В дальнейшем, по-видимому, куры адаптируются к некоторому избытку или недостатку селена в рационе (Касумов, 1981).
Выделение селена из организма происходит через желудочно-кишечный тракт, почки, легкие. Степень участия каждого органа в выделении селена зависит от характера селенового соединения и способа его введения в организм.
Доминирующим является выделение селена с мочой. Обычно этим путем выводится около (40-50) % потребляемого селена. Экскреция с фекалиями обеспечивает возможность выведения неусваиваемых форм селена.
При пероральном введении селенита натрия (20-65) % селена выводится с калом (Георгиевский и др. 1979). При парентеральном введении основная масса селена (до 60 %) выделяется с мочой, (5-7) % – с калом, (4-10) % с выдыхаемым воздухом в виде диметилселенида (Касумов, 1981).
Распределение селена в различных органах и тканях зависит от химической природы потребляемого микроэлемента и его дозы. С повышением уровня селена в рационе кур и цыплят возрастает и его концентрация в тканях. При даче селенсодержащих аминокислот накопление элемента идет интенсивнее, чем при даче селенита натрия (Георгиевский и др., 1979). Распределение селена в организме аналогично распределению серы: (50-52) % его приходится на мышечную ткань, (14-15) % – на кожу, шерсть, роговые образования, 10 % – на скелет, 8 % – на печень, (15-18) % на остальные ткани (Ермаков, 1968, 1974).
В организме кур селен распределяется в следующем убывающем порядке: печень, почки, селезенка, легкие, кости, поджелудочная железа, головной мозг, сердце, мышечный желудок, скелетные мышцы (Томских, 1987). Как правило, почки и печень содержат максимальное количество элемента, что, по-видимому, связано со специальной его функцией в этих органах.
Уровень селена в печени сильно изменяется в зависимости от типа кормления и отражает его количество в рационе, тогда как содержание селена в почках, как при высоком, так и при низком содержании в рационе остается относительно высоким. В печени однодневных цыплят содержатся лишь следы селена, поэтому его препараты необходимо вводить в рацион с первого дня выращивания.
Всосавшийся или введенный парентерально селен поступает в кровь, где обнаружен в альбумине, а также в β- и γ-глобулинах плазмы, в последних в нарастающем количестве (Nowosad, 1976). Вначале селен транспортируется альбумином, затем переносится на α- и β-глобулины, причем в зависимости от концентрации и формы, в которой находится селен, возможны существенные перераспределения его между фракциями (Томских, 1987). Если при малых дозах селен связывался с глобулинами в виде устойчивых к диализу комплексов, то при высоких образовывались неустойчивые соединения с альбуминами.
По наличию селена в крови можно судить об обеспеченности им организма. Содержание его в цельной крови разных видов животных колеблется от 5 до 18 мкг в 100 мл (Георгиевский и др. 1979), (0,05-0,20) мкг/мл (Ермаков, Ковальский, 1974). Нижним пределом нормального содержания селена в крови считают 40 мкг/л (Chauvaux, at al. 1977).
В крови селен включается в лейкоциты, эритроциты, липопротеиды, фибриноген, глобин (Ермаков, Ковальский, 1974). До 70 % селена, содержащегося в крови, сосредоточено в эритроцитах.
Из крови селен поступает в ткани, где фиксируется в составе глобулинов. В небольших количествах включается и в другие серосодержащие соединения – глутатион, тиамин, биотин, таурин (Касумов, 1981; Георгиевский и др. 1979).
Содержание селена в мышцах наиболее вариабельно. Этот вывод соответствует наблюдениям, показывающим, что многие заболевания, причиной которых является недостаточность селена, предоставляют собой болезни мышц (Frost, 1973). В экспериментах Ю. Мишанина (1999) установлено, что отложение селена в мышцах коррелирует с содержанием его в крови.
Селен хорошо проходит через плаценту и накапливается в тканях плода. Он легко преодолевает тканевые барьеры яичника и молочной железы и обнаруживается в яйце и молоке (Георгиевский и др. 1979). В курином яйце общее количество селена колеблется от 5 до 12 мкг. В белке его обычно меньше [(0,051-0,080) мкг/г], чем в желтке [(0,324-0,380) мкг/г сухого вещества]. Разницу в концентрации селена в яичном белке и желтке исследователи объясняют различиями в проницаемости клеточных мембран белковой части яйцевода и печени, где синтезируются белки. Повышение содержания селена в рационе кур-несушек приводит к увеличению его уровня в компонентах яйца (Георгиевский, 1970).
Наиболее подробно биодоступность соединений селена изучена в опытах на крысах. Лишь у 16 из 281 органического соединения селена биодоступность оказалась на 20 % выше, чем у селенита натрия. Показано, что элементарный селен неактивен, селенат натрия усваивается на 22 % лучше, чем селенит натрия, а биодоступность селенсодержащих аминокислот схожа с селенитом натрия (Schwarz, Foltz, 1958; Schwarz, Fredga, 1974).
G.F. Combs (1997) установил, что селен, содержащийся в мясе и кормах растительного происхождения, обладает меньшей биодоступностью, чем селенит натрия, на 25 и 79 % соответственно. При этом он не исключает влияние других диетических факторов (витаминов, микроэлементов и т.п.).
В экспериментах, проведенных в Югославии, Бразилии, США, были получены данные, указывающие на значительное повышение продуктивности бройлеров при замене селенита натрия на органическую форму селена (Фисинин, Папазян, 2003).
Так же, как и селен, йод участвует во всех основных обменных процессах в организме животных и птицы. Общее содержание йода в живом организме составляет (0,0004-0,0008) % (Хенниг, 1976), по данным Я.М. Берзиня, В.Т. Самохина (1968) – (10-100) мкг%, по А.И. Кононскому (1980) – до 0,027 % общей массы.
Концентрация йода в теле птиц колеблется в пределах (0,3-0,7) мг на 1 кг живой массы. Однако этот показатель может варьировать в больших пределах в зависимости от содержания йода в рационе. С возрастом происходит некоторое уменьшение концентрации йода в теле, что обусловлено в значительной мере снижением функциональной активности щитовидной железы.
Животные потребляют йод из кормов, воды и воздуха. Всасывание элемента из корма происходит в значительной степени в желудке и в проксимальной трети тонкого отдела кишечника. Йодиды всасываются быстрее, чем йод, связанный с аминокислотами, без связывания или химического изменения. Содержащиеся в корме в небольшом количестве йодистые соединения с гормональной активностью всасываются без расщепления. Остальные формы органического йода восстанавливаются до йодидов и лишь после этого всасываются в кровь. Выделение йода из организма происходит через желудочно-кишечный тракт и почки. Основная часть йода выделяется с мочой. У млекопитающих значительная часть йода выводится через легкие и кожу. При парентеральном введении йода почками выводится более 70 %, а через желудочно-кишечный канал – около 30 % йода, обнаруживаемого в помете (Георгиевский, 1970).
Йод содержится во всех тканях, жидкостях и клетках тела. До 90 % этого количества находится в щитовидной железе. Содержание йода в нормальной щитовидной железе составляет (0,2-0,5) % сухого вещества (Хенниг, 1976).
При обычном режиме кормления птицы весь йод в организме распределяется следующим образом: щитовидная железа – 60 %, мышцы – 18 %, кожа – 6 %, скелет – 4 %, печень – 2,5 %, кровь – 1,0 %, прочие органы – 8,5 % (Георгиевский, 1970). По концентрации йода ткани и органы птиц располагаются в следующем порядке (мг% на свежую ткань): щитовидная железа – (50-200), фолликулы яичника – до 0,7, селезенка и лимфатические узлы – 0,5, кожа – 0,4, легкие – 0,3, печень – 0,06, почки – 0,05, мышцы – 0,03, кости – 0,025, кровь – 0,007. Эти показатели значительно изменяются при недостаточном йодном питании за счет снижения поступления йода в соматические ткани (Лебедев, 1990).
В цельной крови животных концентрация йода находится в пределах (50-150) мкг/л (Кашин, 1987), (39,4-78,8) нмоль/л (Кононский, 1980). В цельной крови птиц (5-15) мкг% общего йода. Минеральный йод плазмы у взрослых животных составляет (15-20) % от общего количества. Органический йод крови представлен в основном гормонами щитовидной железы, связанными с глобулинами, и в меньшей степени с альбуминами сыворотки. Поэтому для оценки функции щитовидной железы используют такой показатель, как уровень осаждаемого сывороточного йода или белковосвязанного йода (СБЙ). По данным В.И. Георгиевского (1970), величина СБЙ в крови птиц составляет от 1 до (3-4) мкг%.
Кожа с ее производными относительно богата йодом и может его концентрировать. В волосах йод накапливается в виде органических соединений (Хенниг, 1976). В яйцах накопление йода идет по безбарьерному типу – прямо пропорционально повышению его содержания в рационах. При обычных условиях кормления кур в яйце содержится от 3 до 15 мкг йода, или (6-28) мкг в 100 г свежего вещества. Примерно 80 % этого количества находится в желтке и 20 – в белке (Кашин, 1987). При скармливании несушкам йодированных продуктов или йодистых солей в дозах, значительно превышающих оптимальные, содержание йода в яйцах можно повысить до (0,5-2) мг, т. е. в (50-150) раз. Обогащение яйца йодом происходит вскоре после начала скармливания, но максимальная концентрация его достигается на (10-12)-й день подкормки (Георгиевский, 1970).
Обмен йода в организме связан, прежде всего, с синтезом и метаболизмом тиреоидных гормонов. В.И. Георгиевский (1979) показал, что в щитовидной железе из захваченных йодидов крови освобождается йод, после чего происходит йодирование аминокислоты тирозина, входящей в состав тиреоглобулина коллоидов. Образуются 3-монойодтирозин и 3,5-дийодтирозин, из которых синтезируются 3,5,3-трийодтирозин и 3,5,3',5'-тетрайодтирозин, а из них – гормоны трийодтиронин (ТТ, Т3) и тетрайодтиронин (тироксин, Т4). После протеолиза йодтиреоглобулина гормоны освобождаются и поступают в кровь. Конечный этап метаболизма гормонов – их дейодирование в почках, печени, селезенке, мышцах – проходит с участием фермента дейодиназы. Освободившийся йод может снова включаться в обменные процессы.
Поступившие из щитовидной железы в кровь гормоны связываются с белками сыворотки крови, осуществляющими транспортную функцию. Белки могут связывать избыточное количество йодсодержащих гормонов, ограничивая в строгих пределах фракцию свободных гормонов, и тем самым предупреждают их потерю через выделительную систему и регулируют скорость доставки тиреоидных гормонов на периферию, где они оказывают основное метаболическое действие.
Таким образом, биодоступность соединений селена и йода для животных определяется рядом факторов: формой элемента (органическая или неорганическая), дозой, наличием в рационе их синергистов или антагонистов, возрастом, физиологическим состоянием организма, видовыми особенностями животных.
Суммируя приведенные выше сведения, необходимо отметить, что селен и йод являются эссенциальными, жизненно необходимыми микроэлементами для человека и животных. Селен играет решающую роль в защите организма от оксидантного стресса, определяет активность ряда ферментов, служит универсальным антидотом. Йод входит в состав гормонов щитовидной железы, направляющих течение большинства метаболических процессов в организме. Кроме того, йод и селен функционально тесно взаимосвязаны, поскольку селен содержится в ферментах, регулирующих активность тиреоидных гормонов.
При одновременном дефиците в организме этих микроэлементов развивается гипотиреоз, следствием чего является торможение процессов усвоения кислорода, выработки энергии и нарушение процессов метаболизма с образованием недоокисленных продуктов, которые оказывают общетоксическое действие, в конечном итоге снижаются продуктивность и воспроизводительная функция животных. Выраженная вариабельность территориального распределения этих микроэлементов на земной поверхности побуждает исследовать и анализировать их взаимоотношения в различных объектах, в том числе комплексное влияние на продуктивность животных.
В настоящее время известно значительное количество органических и минеральных веществ, обладающих биологической активностью: витамины, гормоны, ферменты, ряд макро- и микроэлементов (Arntzen at al. 1974; Гурьянов, 1995). Эти вещества, используемые в составе кормов или подкормок, стимулируют обменные процессы в организме животных и требуют дозированного применения (Хенниг, 1976; Георгиевский, 1979; Dey, Mukherjee, 1984; Кальницкий, 1985; Вишняков, 1988). Среди них особого внимания заслуживают микроэлементы селен и йод.
До 1957 г. селен и его соединения рассматривались исключительно как токсические для живых организмов вещества, и в настоящее время селен в соответствии с ГОСТ 17.4.1.02 – 83 относится к высокоопасным химическим элементам (Миронова, 2002). Интоксикация происходит главным образом при инъекциях или при скармливании сверхдоз. При селеновом токсикозе увеличивается частота дыхательных движений и сердечных сокращений, наблюдается анемичность кожи и слизистых оболочек, истечение слизи из ротовой полости, алопеция, истощение (Тишков, Войтов, 1989; Banholzer, Heinritzi, 1998). По данным R.L. Arnold, O. E. Olson (1973), селен характеризуется узким пределом допустимых концентраций в корме и в случае превышения этого предела вызывает угнетение роста и понижение продуктивности.
Механизм токсического действия селена, не полностью выясненный, все же более очевиден, чем механизм его биологического действия. Токсические дозы селена блокируют сульфгидрильные группы ферментов тканевых белков, вызывают гипоксию. Видимо, селен в высоких дозах угнетает, а в малых стимулирует активность ферментов, усиливая процессы тканевого дыхания и окислительного фосфорилирования в организме (Кудрявцева, 1974; Мозгов, 1979).
В настоящее время селен в малых дозах признан незаменимым микроэлементом для сельскохозяйственных животных (Болотников, Конопатов, 1987). Многочисленные опыты как отечественных, так и зарубежных ученых подтвердили положительное влияние селена на воспроизводительную функцию животных и жизнеспособность потомства (Алешко, 1971; Кудрявцева, 1974; Cantor, Scott, 1974).
Применение препаратов селена в кормлении приобретает особую актуальность в связи с резким снижением количества животных кормов (основных источников селена), широким использованием продуктов микробиологической промышленности, применением технологий заготовки и подготовки кормов к скармливанию с высокотемпературными обработками [селен начинает улетучиваться из кормов уже при (50-60) оC]. У многих веществ, обладающих канцерогенным действием, обнаружена способность резко увеличивать выделение селена из организма более чем в 20 раз и вызывать значительный дефицит этого элемента даже в случаях поступление в организм в дозах, превышающих обычно рекомендуемые (Дюкарев, Клочковский, Дюкар, 1985).
Наиболее распространенными препаратами селена, используемыми в кормлении животных, являются селенит и селенат натрия.
Селенит натрия содержит селена 45,7 %, селенат натрия – 41,4 %. Доступность селена для птицы из селенита натрия составляет 74 %. Доступность селената для птицы ниже, чем селенита (Кузнецов, Кузнецов, 2001). Селенат натрия – относительно стабильное соединение, он менее вреден для других ингредиентов премиксов и менее токсичен по сравнению с селенитом.
Если селенит всасывается через мембраны щеточной каймы в начальном отделе тонкого кишечника, то селенаты – в средней и каудальной за счет механизмов активного транспорта. Абсорбцию селена из селенита стимулируют цистеин и глутатион, а ингибируют метионин и его аналоги (Кузнецов, 1991).
Селенит натрия кормовой (0,1 %) является препаративной формой селенита натрия с добавлением инертных наполнителей, которые вводят в комбикорм непосредственно перед раздачей и тщательно перемешивают. Однородность смешивания достигает (95-96) %. Низкая концентрация селена по чистому веществу (0,046 %) обеспечивает не только удобство, но и безопасность применения препарата в производстве комбикормов и премиксов.
Синтезированное во Всероссийском НИИ физиологии, биохимии и питания сельскохозяйственных животных (ВНИИФБиП) органическое соединение селена – селенопиран – по ряду критериев не имеет аналогов в мировой практике и выгодно отличается от всех известных ранее органических соединений селена. Токсичность селенопирана ниже, чем всех известных органических соединений селена, и более чем в 100 раз меньше, чем селенита натрия.
В биотехнологическом центре «Оллтек» был получен препарат сел-плекс путем выращивания дрожжевых специфических клеток, синтезирующих селенометионин в контролируемых условиях. Продукт содержит селен преимущественно в составе аминокислот селенометионина (50 %) и селеноцистина (25 %). Общее содержание селена 1000 мг/кг. Селен в составе препарата сел-плекс имеет более высокую доступность, особенно в условиях стрессов, не является окислителем, остается стабильным при температуре 121 °С в течение 30 минут, что позволяет проводить грануляцию при производстве кормов.
Несмотря на огромное биологическое значение селена, он не находил долгое время широкого применения в кормлении птицы. Лишь в отдельных странах его включали в состав комбикормов и премиксов. Между тем большинство кормов, используемых в птицеводстве, не обеспечивает потребности птицы в этом микроэлементе. Обычный хозяйственный рацион содержит (0,03-0,1) мг/кг селена. Однако предложенные разными авторами нормы скармливания птице селена ориентировочны. Не определены также потребности в селене для птицы различного направления продуктивности, а также в отдельные периоды индивидуального развития.
Для восполнения дефицита селена в кормах используют различные источники, из которых наибольшее распространение получили селенит натрия и натрий селенисто-кислый 5-водный. Их дозы (1-2) г на 1 т корма (Шкарин, 2004). Применять селенит натрия молодняку птицы разрешается с первых дней жизни из расчета 1 мг препарата на 10 кг корма (Гробовский, 1973).
После вывода, особенно на 5-й день жизни, концентрация витамина Е в печени цыплят, индюшат, гусей, уток резко падает – более чем в 20 раз. В то же самое время активность глутатионпероксидазы повышается к моменту вывода, что дало основание назвать селен главным постнатальным антиоксидантом. Этот фактор является одним из важных в обеспечении высокой жизнеспособности в течение первых 10 дней жизни цыплят.
Для птицы селенит натрия можно добавлять в питьевую воду. Для этого 10 мг препарата растворяют в 100 л воды и разливают по поилкам в течение (2-4) дней подряд (Дюкарев и др. 1985). В опытах Л.М. Борисовой (1969) применение селенита натрия с водой оказалось более эффективным, чем с кормом. Это, возможно, связано с более равномерным распределением препарата, а также лучшим всасыванием его в желудочно-кишечном тракте. В. Шипилов (2000) предлагает норму ввода селенита натрия кормового для птицы от 100 до 450 г на 1 т комбикорма.
Профилактический и ростовой эффект микродобавок селена к рациону цыплят-бройлеров [(0,2-0,4) мг/кг сухого вещества], особенно на фоне нестабильного липидного питания, наблюдали многие исследователи (Георгиевский, 1970; Цалс, 1972; Нурмухаметова, 1984; Девеча, 1984).
По данным Г.П. Белехова и А.А. Чубинской (1965), положительное действие селена сказывается на предупреждении и лечении экссудативного диатеза у цыплят в количестве 0,08 мг на 1 кг живой массы.
А. Хенниг (1976) минимальную потребность в селене для всех сельскохозяйственных животных и птицы устанавливает на уровне (0,08-0,1) мг/кг, причем эта величина может несколько изменяться в зависимости от концентрации серы в рационе. В некоторых случаях для устранения экссудативного диатеза цыплят необходимы дозы селена выше 0,1 мг/кг корма.
Оптимальным уровнем селена в кормах для птиц С.Н. Касумов (1981) предлагает считать (0,1-0,3) мг/кг, недостаточным – менее 0,1 мг/кг, токсичным – более 3,0 мг/кг. По его мнению, содержание элемента в рационе должно находиться на уровне: для цыплят (0,20±0,05), утят и индюшат (0,25±0,05), кур-несушек – (0,15±0,05) мг/кг корма. В.И. Георгиевским и др. (1985) установлена потребность в селене на уровне 0,06 мг/кг (в виде селенита) для максимального роста и ингибирования перекисного окисления. В то же время добавка 0,1 мг селена к рациону кур с уровнем селена (15-30) мкг/кг увеличивала яйценоскость, повышала выводимость и жизнеспособность молодняка и предотвращала появление экссудативного диатеза. В целом оптимальный уровень селена в кормах 0,1 мг/кг, недостаточный – менее 0,1 мг/кг, токсический – (5,0-8,0) мг/кг.
В.В. Дюкарев, А.Г. Клочковский, И.В. Дюкар (1985) потребность в селене при использовании доброкачественных кормов оценивают в (0,1-0,3) г в 1 т корма. Л.И. Тучемский (1999) определяет потребность в селене для птицы (0,15-0,2) мг/кг корма. Т.М. Околелова и др. (1999) определяют нормы ввода добавок селена в комбикорма для цыплят-бройлеров 0,15 г/т. Минимальный предел, при котором наступает явление токсикоза (селеноза), по В.В. Ермакову и В.В. Ковальскому (1974), 2,5, по Б.Д. Кальницкому (1985) – (3,0-4,0) мг селена на 1 кг сухого вещества корма.
По данным Э. Визнера (1976), А.В. Атлавина и др. (1990), при содержании селена в рационе 5 мг/кг корма снижаются темпы роста, яйценоскость и выводимость цыплят, при 8 мг/кг отмечаются тяжелые патологии у цыплят, а при 10 мг/кг наблюдается полное прекращение выводимости цыплят.
По данным И.А. Девеча (1991), стимулирующим является содержание селена от 0,19 до 5,08 мг/кг сухого вещества корма, токсическим - 7,58 мг/кг. С.Г. Кузнецов (1992) считает токсичным корм, содержащий (7,0-10,0) мг селена на 1 кг сухого вещества.
А.И. Тишков, Л.И. Войтов (1989) установили видовую чувствительность птицы к селениту натрия: наиболее чувствительны к нему индюшата, затем цыплята-бройлеры, утята. Минимальная токсическая доза селенита натрия, способная вызвать изменения в клиническом статусе цыплят-бройлеров, – 1,70 мг/кг, острый токсикоз – (13,76-27,52) мг/кг, хронический токсикоз – (1,70-7,83) мг/кг массы тела в течение 14 суток применения.
Следовательно, при введении препаратов селена в рационы птицы необходимо тщательно соблюдать дозировку и обеспечивать равномерное смешивание их с комбикормом.
В качестве источников йода можно использовать большое количество препаратов, появившихся в последние годы, однако классическими являются йодат кальция – 65,0 % йода, йодат калия – 59,0 % и йодид калия – 76,5 % (Фелтвелл, Фокс, 1983).
Йодистый натрий (NaI) и йодистый калий (KI) – основные соединения йода, применяемые в качестве добавок. Однако эти соединения нестабильны, катализируют процесс их окисления соединения железа, меди и марганца.
Йодид калия легко растворим в воде. Из препарата йод усваивается на (25-35) %. Йодистый калий по сравнению с йодистым натрием более стоек и менее гигроскопичен, поэтому его применяют в зоотехнической практике для предотвращения гипотиреоза.
Соли йода стабилизируют восстановителями, имеющими щелочную реакцию (тиосульфат натрия, двууглекислый натрий, стеарат кальция), так как перекиси и кислоты переводят йод в молекулярную форму. Применение стеарата кальция повышает стабильность йодистого калия в (1,7-1,8) раза и дает возможность увеличивать сроки хранения премиксов почти в 2 раза. Смешивание йодида калия перед введением в премикс с (8-24) % (по массе йодида) природного цеолита позволяет повысить сохранность йода в 3,5 раза, срок хранения премикса – с 4 до 12 месяцев (Кузнецов и др., 1992).
Йодаты калия и кальция меньше разрушают витамины А и Е, чем йодиды, нетоксичны и более стабильны, чем йодид калия или натрия.
В большинстве применяемых подкормок, полисолях, брикетах, комбикормах и препаратах йод не стабилизируется и улетучивается в процессе изготовления и хранения, или соединяется с другими биологически активными веществами и превращается в неусвояемые для организма животных формы (Кузнецов, 1991).
В связи с высокой летучестью йода содержание КI в корме снижается уже через 1 месяц на 25 %, через 2 месяца на 50 %, через 5 месяцев на 78 %, через год – на 90 %. Для стабилизации йодидов в условиях комбикормовых заводов используют тиосульфат, бикарбонат натрия или стеарат кальция. Этот процесс очень трудоемок и затратен (Лебедев, 1990). При стабилизации КI бикарбонатом натрия повышается сохранность йода на (10-12) % в течение первых двух месяцев (Кузнецов, Батаева, Овчаренко и др., 1992).
В настоящее время широко применяется стабилизированный препарат кайод. Выпускается он в виде таблеток массой (1,0-0,27) г, в которых йода (2,3-6,0) мг. Технология скармливания таблеток различным видам и группам животных неодинакова. Самая простая сводится к индивидуальной подкормке каждого животного или добавлению таблеток к кормам в расчете на группу (Лебедев, 1990). Наиболее современный метод обогащения кормов йодом состоит во введении йодида в состав комбикормов и премиксов в необходимых дозах в сочетании с другими микроэлементами. Этот метод имеет три существенных недостатка.
Первый состоит в постепенном испарении йода из комбикорма во время его хранения или физической, термической и химической подготовки к скармливанию. Второй заключается в образовании плохо усвояемых и вредных соединений с микроэлементами – антагонистами йода: медью и фтором. Третьим недостатком является то, что дефицит йода может возникать в результате введения в состав комбикормов большого количества ценных белковых культур: бобов, сои, гороха, витаминной муки из белого клевера или капусты. Эти культуры содержат гойтрогены (зобогенные вещества), относящиеся к группам тиогликозидов, тиоцианатов, перхлоратов, которые ингибируют усвоение йода (Георгиевский и др. 1979; Дюкарев, Клочковский, Дюкар, 1985).
Помимо индивидуальной дачи и введения в корма таблеток, разработана технология обогащения йодом кормовой соли. Как показали исследования, этот метод является недостаточно эффективным из-за непрочного соединения поваренной соли с йодом (Венедиктов, Ионас, 1979; Гуревич, Жабская, Межвинская, 1953).
С.Г. Кузнецовым (1991) при изучении сохранности 14 соединений йода в составе премикса КС-3 для поросят установлено, что срок сохранения йода зависит от применяемого стабилизатора. Об обеспеченности молодняка свиней этим микроэлементом судили по его содержанию в щитовидной железе, образованию тиреоидных гормонов и экскреции с мочой циклических нуклеотидов (цАМФ и цГМФ). Отмечено, что при добавлении КI в премиксы йод, выделяющийся вследствие высокой химической активности, разрушает некоторые витамины, в частности А и Е, от 21 до 48 %.
Ю.В. Мишанин, М.Ю. Мишанин, А.А. Прядко (2001) изобрели кормовое средство для профилактики селеновой и йодной недостаточности у сельскохозяйственных животных и птиц. Предварительно готовили крахмальный клейстер, спиртовой раствор кристаллического йода в соотношении 1:10, водные растворы йодида калия в соотношении 1:10 и селенита натрия в соотношении 1:5. Затем в охлажденный до (40-50) оС клейстер последовательно добавляли раствор йодида калия и кристаллического йода и смешивали, далее добавляли раствор селенита натрия, перемешивали в течение (20-30) минут, высушивали и измельчали до порошкообразного состояния. Использование крахмального клейстера обеспечивает получение кормового средства со стабилизированным количеством селена и йода за счет обволакивания молекулами крахмала молекул йода и селенита натрия. Использование кристаллического йода обеспечивает хорошую растворимость йодида калия.
При невозможности использования йодистых подкормок в кормовой смеси йодид калия или натрия вводят в питьевую воду в количестве 2,0 г на 100 л воды (Георгиевский, 1970). Добавки соединений йода в корма и питьевую воду увеличивают рост, яйценоскость птицы (Вишняков и др. 1971; Гусаков, Островский, 2002; Евхутич, Лебедева, 2005), оплодотворяемость яиц и выводимость молодняка (Петров, 1963). Оптимизация содержания йода в рационах путем микродобавок йодистых соединений повышала мясную продуктивность кур на (7-37) %, а яйценоскость – на (6-26) % (Егоров, 1973; Кашин, 1987). Обнаружено, что лучше росли цыплята, которые регулярно, начиная с первого дня жизни, получали добавку йодистого калия в составе рациона (Горянов, 1959).
Токсический избыток йода в рационе птицы маловероятен, так как толерантность к данному элементу высокая. При дозах выше оптимальных в 300-1000 раз у кур временно прекращалась яйцекладка и ухудшались инкубационные качества яиц (Георгиевский и др., 1979).
Потребность в йоде зависит от возраста, физиологического состояния и его концентрации в корме. Ориентировочные нормы содержания йода в кормах для удовлетворения физиологических потребностей для птицы – (0,3-1,0) мг/кг сухого вещества корма (Хенниг, 1976; Георгиевский и др., 1979). По данным П.Д. Евдокимова и В.Д. Артемьева (1974), наиболее эффективны следующие дозы йодистого калия: цыплятам – 0,2 мг, курам – 0,5 мг на голову в сутки. По мнению Я.М. Берзиня и В.Т. Самохина (1968), общая потребность птицы в йоде составляет 0,58 мг на 1 кг сухого вещества рациона. Достаточным количеством йода для нормального роста и функции щитовидной железы у цыплят С.И. Вишняков, А.Н. Апухтин и В.С. Иноземцев (1971) считают (0,3-0,4) мг на 1 кг корма.
У птицы, как и у других сельскохозяйственных животных, недостаток йода сказывается, прежде всего, на эмбриональном развитии. Эти нарушения наблюдались в опытах А. Хеннига (1976) при содержании йода в корме менее 0,15 мг на 1 кг корма. Племенным курам требуется йода около 0,5 мг/кг. Рекомендуемые А.М. Венедиктовым и А.А. Ионасом (1979) нормы йода для птицы составляют (в мг на 1 кг сухого вещества рациона): куры – (0,3-1,0), индейки – 1,0, гуси – 1,0 утки – 1,0.
В.В. Дюкарев, А.Г. Ключковский, И.В. Дюкар (1985) рекомендуют вводить в комбикорм 0,7 г йода на 1 т. Ориентировочные рекомендации ВНИТИП по нормам ввода йодистого калия в комбикорма следующие (г/т): куры племенные и промышленных стад – 3,0, бройлеры от 1 до 30 дней и от 31 до 70 дней – 3,0. Л.И. Тучемский (1999) определяет потребность в йоде для взрослых племенных кур – 2,0, молодняка всех видов – (0,4-0,6), а для бройлеров быстрорастущих кроссов – 1,0 мг/кг корма. Признаки недостаточности проявляются при содержании в корме йода менее (0,2-0,15) мг/кг. Т.М. Околелова и др. (1999) определяют норму ввода йода в комбикорма для цыплят-бройлеров 0,7 г/т.
Исходя из вышеизложенного, можно сделать вывод о том, что йод- и селенсодержащие препараты многочисленны и находят широкое применение в практике кормления всех видов сельскохозяйственных животных. В настоящее время в продаже имеется огромное количество препаратов, имеющих в своем составе селен и йод, с разными коммерческими названиями, однако основными компонентами подавляющего большинства их являются селенит и селенат натрия, селенометионин, селеноцистеин, йодат кальция, йодат калия, йодид калия и йодид натрия.
Не подлежит сомнению влияние йода и селена на интерьерные показатели сельскохозяйственных животных и на их продуктивность. Решающее значение имеет оптимальное обеспечение животных этими микроэлементами, особенно селеном, токсичным в завышенных дозах.
п.1 см. по ссылке→ п. 3 см. по ссылке→ литературу см. по ссылке→
п.1 см. по ссылке→ п. 3 см. по ссылке→ литературу см. по ссылке→